Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease
نویسندگان
چکیده
Abnormal hyperphosphorylation of tau is pivotally involved in the pathogenesis of Alzheimer's disease (AD) and related tauopathies. Glycogen synthase kinase 3β (GSK-3β) is a primary tau kinase that is most implicated in tau pathology in AD. However, the exact molecular nature of GSK-3β involved in AD is unclear. In the present study, we found that GSK-3β was truncated at C-terminus and correlated with over-activation of calpain I in AD brain. Truncation of GSK-3β was positively correlated with tau hyperphosphorylation, tangles score and Braak stage in human brain. Calpain I proteolyzed GSK-3β in vitro at C-terminus, leading to an increase of its kinase activity, but keeping its characteristic to preferentially phosphorylate the protein kinase A-primed tau. Excitotoxicity induced by kainic acid (KA) caused GSK-3β truncation at C-terminus and hyperphosphorylation of tau in mouse brain. Inhibition of calpain prevented the KA-induced changes. These findings suggest that truncation of GSK-3β by Ca(2+)/calpain I markedly increases its activity and involvement of this mechanism probably is responsible for up-regulation of GSK-3β and consequent abnormal hyperphosphorylation of tau and neurofibrillary degeneration in AD.
منابع مشابه
Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway
Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42...
متن کاملStimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β
Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer's disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand st...
متن کاملTruncation and Activation of Dual Specificity Tyrosine Phosphorylation-regulated Kinase 1A by Calpain I: A MOLECULAR MECHANISM LINKED TO TAU PATHOLOGY IN ALZHEIMER DISEASE.
Hyperphosphorylation and dysregulation of exon 10 splicing of Tau are pivotally involved in pathogenesis of Alzheimer disease (AD) and/or other tauopathies. Alternative splicing of Tau exon 10, which encodes the second microtubule-binding repeat, generates Tau isoforms containing three and four microtubule-binding repeats, termed 3R-Taus and 4R-Taus, respectively. Dual specificity tyrosine-phos...
متن کاملFormaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo.
BACKGROUND Chronic formaldehyde exposure leads to memory impairment and abnormal elevation of endogenous formaldehyde has been found in the brains of Alzheimer's disease (AD) patients. Hyperphosphorylated Tau protein with subsequent aggregates as neurofibrillary tangles (NFTs) is one of the typical pathological characteristics in AD brains. The mechanism underlying abnormally elevated concentra...
متن کاملGSK-3β and memory formation
In Alzheimer's disease (AD), tau hyperphosphorylation and neurofibrillary tangle (NFT) formation are strongly associated with dementia, a characteristic and early feature of this disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal kinase in both the normal and pathological phosphorylation of tau. In the diseased state, hyperphosphorylated tau is deposited in NFTs, the formation of which,...
متن کامل